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Abstract

This paper examines the damping parameter design optimization problem for structural systems with collocated

measurements and inputs so that H1 norm bound constraints are satisfied. We utilize a particular solution of the Bounded

Real Lemma that provides an explicit upper bound on the H1 norm of a collocated structural system. Using this upper

bound result the damping design is formulated as a linear matrix inequality (LMI) optimization problem with respect to

the damping coefficients of the structural system. The formulation is particularly useful for large-scale structural systems

where existing methods are computationally prohibitive. Numerical examples demonstrate the benefits and computational

advantages of the proposed damping parameter design method.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

As an important component of passive structural systems design, the problem of damping parameters
design has been studied for over a century [1]. The use of dashpots and tuned mass dampers (TMD) is two
widely used methods of passive vibration attenuation. These simple devices have been proven very effective for
reducing severe vibrations of machinery, buildings, bridges and many other mechanical and civil engineering
systems with relatively low cost [2,3]. Such passive vibration control devices are often favored compared to
active and semi-active controllers in many practical applications because of their reduced complexity including
the absence of external driving power [4].

There are numerous optimization-based methods that have been examined for optimal placement and
optimal value assignment of damping devices. To this end, optimality conditions have been derived and
various parametric studies and gradient or steepest-descent algorithms have been proposed to minimize
resonant amplitude, critical excitation response or system energy dissipation requirements [5–9]. However,
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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these methods suffer from increased complexity and computational cost that could easily become prohibitive,
especially for large-scale structural systems.

Recently, structural parameter design techniques have been proposed that consider the structural parameter
selection and optimization of passive mechanical components as a control design problem. This approach allows
the use of rigorous system theoretic and system gain mathematical tools to quantify system performance and to
provide a connection to closed-loop response in controlled structural systems. Thus, optimal and robust control
techniques, such as the H2=LQR (linear quadratic regulator) and H1 optimization approaches, have been
proposed for structural parameter design. The H2 optimal dynamic output feedback control synthesis problems
is connected to the solution of the standard LQG (linear quadratic Gaussian) problem, which is a combination
of state estimation and state feedback control that can be solved using the corresponding Riccati equations. The
state-space H1 norm control method based on the Riccati equation approach or the linear matrix inequality
(LMI) formulation are now well-developed control synthesis tools. The optimal static state feedback and full-
order dynamic output feedback H1 control synthesis problems can be solved using iterations on the
corresponding Riccati solutions or via the computational solution of a convex LMI optimization problem
[10–13]. On the other hand, the static output feedback and the fixed-order dynamic output feedback control
synthesis problems are difficult computational problems since they require the solution of (nonconvex) bilinear
matrix inequalities or linear matrix inequalities with coupling rank constraints [14,15]. Unfortunately, the use of
such control-oriented methods for structural parameter design leads to a static output feedback formulation
resulting in complex numerically cumbersome optimization problems [16–21].

Having strain or displacement information as the system output, feedback of the measured output rate has
been proven to be very effective in adding local damping to the structure. The control of structural systems
with collocated sensors and actuators has been shown to provide great advantages from a stability, passivity,
robustness and an implementation viewpoint [22]. For example, collocated control can easily be achieved in a
space structure when an attitude rate sensor is placed at the same location as a torque actuator [22,23].
Collocation of sensors and actuators leads to symmetric transfer functions. Several other classes of
engineering systems, such as circuit systems, chemical reactors and power networks, can be modelled as
systems with symmetric transfer functions. Stabilization, robustness, model reduction and control of such
systems have been examined recently [24,25].

In this work, we use recently developed control-oriented algebraic tools to formulate the damping
parameter design problem in collocated structural systems as an efficient convex LMI optimization problem
[26]. By exploiting the particular structure of collocated structural systems, explicit upper bounds for the H1
norm of the system can be obtained. To this end, particular solutions of the Bounded Real Lemma (BRL) are
used and an explicit expression for an upper bound of the H1 norm of such external symmetric system are
obtained that require only the computation of the maximum eigenvalue of a symmetric matrix. Subsequently,
the damping parameter design problem is formulated as a LMI optimization problem of minimizing the H1
norm bound with respect to the unknown damping coefficients.

LMI optimization problems have received increased attention recently in systems, controls and structural
design applications. They constitute convex optimization problems that can be solved efficiently in polynomial
time using interior point methods. Hence, global optimality of the corresponding solution is guaranteed.
A collection of system analysis and control design problems that can be formulated in a LMI form can be
found in Refs. [13,26].

The standard notation 4 ðoÞ is used in this paper to denote the positive (negative) definite ordering of
symmetric matrices. The ith eigenvalue of a real symmetric matrix N will be denoted by liðNÞ where the
ordering of the eigenvalues is defined as lmaxðNÞ ¼ l1ðNÞXl2ðNÞX � � �XlnðNÞ: The maximum singular value
of a (not necessarily square) matrix N will be denoted by smaxðNÞ, which is also its spectral norm kNk.

2. Analytical H1-norm bound for collocated systems

Consider the following vector second-order representation of a structural system with collocated velocity
measurements and inputs:

M€qþD_qþ Kq ¼ Fu; y ¼ FT _q, (1)
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where qðtÞ 2 Rn is the generalized coordinate vector, uðtÞ 2 Rm is the input or disturbance vector and yðtÞ 2 Rk

is the measured output vector. The matrices M, D and K are symmetric positive-definite matrices that
represent the structural system mass, damping and stiffness distribution, respectively.

The system has a state-space realization as follows:

_x ¼ Axþ Bu; y ¼ Cx (2)

with state-space matrices

A ¼
0 I

�M�1K �M�1D

� �
; B ¼

0

M�1F

� �
,

C ¼ ½0 FT�, (3)

where the state vector is x ¼ ½qT _qT�T. The transfer function GðsÞ of the system in Eqs. (2) and (3) is obtained
as

GðsÞ ¼ sFTðMs2 þDsþ KÞ�1F.

Notice that this transfer function is symmetric, i.e., GðsÞ ¼ GT
ðsÞ. Hence, the system in Eqs. (2) and (3) is an

externally symmetric state-space realization, that is, there exists a nonsingular matrix T such that

ATT ¼ TA; CT
¼ TB. (4)

This class of systems is more general than the class of internally or state-space symmetric systems that they
satisfy the symmetry conditions (Eq. (4)) with a positive-definite transformation matrix T [27]. Obviously,
state-space symmetry implies external symmetry, but the converse is not true, that is, there exist symmetric
transfer matrices for which there is no internally symmetric realization. An analytical solution of the H1
control problem for internally symmetric systems has been presented in Ref. [28].

The H1 norm of a system is the peak magnitude of its frequency response function (FRF). In a time-
domain interpretation, the H1 norm corresponds to the energy (or L2 norm) gain of the system from the input
u to the output y [13]. Hence, in this setting the H1 norm defines a disturbance rejection property of the
system.

Recall that the H1 norm of the system in Eq. (2) is given by

kGk1 ¼ sup
o2R

smaxfGðjoÞg, (5)

where GðsÞ ¼ CðsI� AÞ�1B is the transfer function of the system and smax denotes the maximum singular
value of a matrix. It is well known that for a stable linear time-invariant system, its H1 norm can be
approximated iteratively, for example using a bisection method [29]. The following result shows that for a
vector second-order realization described in Eqs. (2) and (3), an upped bound on its H1 norm can be
computed using a simple explicit formula [30].

Theorem 1. Consider the vector second-order system realization in Eqs. (2) and (3). The system has an H1 norm g
that satisfies

goḡ ¼ lmaxðF
TD�1FÞ. (6)

To prove this result recall the BRL characterization of the H1 norm of a system.

Lemma 1 (Skelton et al. [13]). A stable system as in Eq. (2) has an H1 norm less than or equal to g if and only

if there exists a matrix PX0 satisfying

ATPþ PA PB CT

BTP �cI 0

C 0 �cI

2
64

3
75p0. (7)

Recall also the following Schur complement formula [31].
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Lemma 2. The block matrix

S ¼
S11 S12

ST
12 S22

" #
,

where S11 and S22 are symmetric, is positive definite if and only if

S1140 and S22 � ST
12S
�1
11 S1240

or

S2240 and S11 � S12S
�1
22 S

T
1240.

Theorem 1 follows from the BRL condition and the following algebraic result [32].

Lemma 3. Consider matrices C and Q such that C has full column rank and Q is symmetric positive definite. Then

QXCCT if and only if

lmaxðC
TQ�1CÞp1.

Proof of Theorem 1 (Sketch). The result follows from the BRL 1 by utilizing the following Lyapunov matrix:

P ¼
K 0

0 M

� �
. (8)

Application of the Schur complement formula in Lemma 2 results in the following condition:

�Dþ
1

g
FFTp0. (9)

Then, application of the Lemma 3 provides the bound in Eq. (6). &

Numerical examples in Ref. [30] demonstrate the validity and computational efficiency of the above
analytical bound.
3. Damping design using the analytical bound approach

The analytical H1 norm upper bound of the collocated structural system in Eq. (1) given in Theorem 1 is
solely dependent on the damping distribution matrix D and the input/output distribution matrix F. For
lumped parameter systems, the damping metric D can be expressed in terms of the elemental damping
coefficients as follows:

D ¼
Xm

i¼1

ciTi, (10)

where ci denotes the viscous damping constant of the ith damper and Ti represents the distribution matrix of
the corresponding damper in the structural system. The Ti’s are given symmetric matrices with elements 0, 1
and �1 that define the structural connectivity of the damping elements in the structure. Then, using the Schur
complement formula, the H1 norm upper bound condition in Eq. (6) can be re-written asPm

i¼1ciTi F

FT gI

" #
X0. (11)

Practical structural system design specifications impose upper bound constraints on the values of the damping
coefficients, that is

0pcipcmax. (12)
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Also, often an upper bound on the total available damping resources is imposed, that is

Xm

i¼1

cipctotal. (13)

Based on the above discussion the damping design problem can be formulated as follows.

4. Damping design optimization problem

Consider the collocated structural system given in Eq. (1) with the damping distribution defined in Eq. (10).
For a given positive scalar g, the H1 norm of the system is less than g if the following conditions with respect
to the damping coefficients ci are feasible: Pm

i¼1ciTi F

FT gI

" #
X0, (14)

0pcipcmax, (15)

Xm

i¼1

cipctotal. (16)

The above conditions constitute an LMI feasibility problem with respect to the damping coefficients ci. Then,
the optimization of damping coefficients can be achieved by solving the LMI optimization problem

min
ci

g (17)

subject to the constraints defined in Eqs. (14)–(16). Recall that LMI optimization problems constitute convex
optimization problems that can be solved effectively using recently developed interior point optimization
algorithms [13,26].

Hence, the upper bound approach in the above LMI formulation provides a computationally efficient
method to compute the damping coefficients of collocated structural systems. Since the assigned upper bound
g is always greater than or equal to the exact H1 norm of the system, the design result is conservative.
However, our computational examples and experience with the proposed bound indicate that it indeed
provides a good approximation of the exact H1 norm.

Remark. The significance and benefit of the proposed H1 norm upper bound damping parameter
optimization approach is evident in the design of very large-scale structural systems where standard methods
based on nonlinear optimization approaches are computationally prohibitive. The proposed LMI-based
convex optimization formulation can address the design of structural systems with a large number of states
and design variables.

5. Numerical examples

5.1. Single degree of freedom (1-dof) case

To demonstrate and motivate the above results consider the 1-dof case ðn ¼ 1Þ where qðtÞ, uðtÞ and yðtÞ are
scalar quantities in Eq. (1). For this scalar case, the magnitude of the FRF of the system in Eq. (1) is

jGðjoÞj ¼
F 2jojffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðK �Mo2Þ
2
þD2o2

q , (18)

where M, D and K represent the scalar mass, damping and stiffness coefficients of the system. It can be easily
observed that the magnitude of the FRF reaches its maximum at the natural frequency of this dynamic system,
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i.e., when

o ¼ on ¼

ffiffiffiffiffiffiffiffi
K

M
:

r
(19)

Thus, the above FRF magnitude satisfies the following bound at all frequencies:

jGðjoÞj ¼ jGðjonÞjp
F 2joj
Djoj

¼
F2

D
, (20)

that is, kGk1pF2=D. This bound is precisely the one provided in Theorem 1 for the system. In fact, in this
scalar case the above bound provides the exact H1 norm of the system, that is kGk1 ¼ F 2=D. Therefore, the
H1 norm bound kGk1pg is achieved if and only if the damping coefficient D is selected to satisfy the bound

DXF 2=g. (21)

Notice that this result coincides with the bound obtained from Eq. (14).
As an example consider the case where F ¼ 10, M ¼ 30 kg and K ¼ 500N=m. Then, for a desired H1 norm

bound g ¼ 0:5 the designed value of the damping coefficient D ¼ 102=0:5 ¼ 200N s=m. This result is
confirmed from the Bode diagram of the system shown in Fig. 1 that obtains a maximum of 20 log10ð0:5Þ ¼
�6:02 dB at o ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
K=M

p
¼ 4:08 rad=s.
5.2. Two-story shear building model

Now, let us consider a two-story shear building model with added viscous dampers as shown in Fig. 2. This
model is considered in Ref. [5]. The two-degree-of-freedom system has masses m1 ¼ m2 ¼ 100 kg and stiffness
k1 ¼ k2 ¼ 200N=m relative to the base. The system is subject to the disturbance inputs u1 and u2 (such as wind
gust disturbance on the structure). Our objective is to design the damping coefficients c1 and c2 that attenuate
the velocities of the masses m1 and m2 caused by the disturbance forces u1 and u2: Specifically, we want to
design the dampers c1 and c2 so that the system satisfies a given H1 norm performance constraint gp0:5 from
the disturbance forces to the velocities v1, v2 of the masses m1 and m2.

The system has the collocated vector second-order form in Eq. (1) with structural matrices

M ¼
m1 0

0 m2

" #
; D ¼

c1 þ c2 �c2

�c2 c2

" #
,
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Fig. 1. Bode diagram of the one-degree-of-freedom example (magnitude in m/s).
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Fig. 2. Two-story shear building model with added viscous dampers.
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K ¼
k1 þ k2 �k2

�k2 k2

" #
and F ¼

1 0

0 1

� �
. (22)

The design parameters are c1 and c2 and the damping distribution matrices T1 and T2 of the damping
distribution matrix D are obtained from the expansion

D ¼
c1 þ c2 �c2

�c2 c2

" #
¼ c1

1 0

0 0

" #
þ c2

1 �1

�1 1

" #

¼ c1T1 þ c2T2. (23)

In addition, the damping coefficients are subject to the constraints

cip10N s=m; i ¼ 1; 2. (24)

Using the above parameters we solve the corresponding LMI feasibility problem described in Section 4. The
corresponding damping coefficients are obtained as

c1 ¼ 5:04; c2 ¼ 6:49N s=m, (25)

and the exact H1 norm of the damped system is 0.481 which is slightly less than the desired bound 0.5. The
frequency responses from the disturbance u1 to output v1, from u2 to v2, from u1 to v2 and from u2 to v1 are
shown in Figs. 3 and 4. It can be seen that the designed system reduced the effect of the disturbances
significantly and our design goal is achieved.

5.3. Five spring– mass– damper system example

Next, consider the five-degree-of-freedom mass, spring and damper interconnected system shown in Fig. 5.
This example is borrowed and revised from Refs. [16,19].

Our design objective is to optimize the values of the damping coefficients ci, i ¼ 1; . . . ; 5 so that the H1
norm of the collocated system from the disturbance forces u1 and u2 to the velocities of masses m2 and m4 is
minimized. The physical parameters of this system are selected as mi ¼ 1 kg, ki ¼ 1N=m and the damping
coefficients ci, i ¼ 1; . . . ; 5 are the unknown design parameters.

The damping distribution matrix D of this system is given by

D ¼

c1 þ c2 �c2 0 0 0

�c2 c2 þ c3 �c3 0 0

0 �c3 c3 þ c4 �c4 0

0 0 �c4 c4 þ c5 �c5

0 0 0 �c5 c5

2
6666664

3
7777775
¼
X5
i¼1

ciTi. (26)

For comparison and design trade-off purposes we consider a family of optimal damper designs using the
results of the damping design optimization problem defined in Section 4. The obtained designs correspond to
different values of the total damping capacity ctotal ranging from 0.5 to 20N s=m. The results of the optimal
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Fig. 3. Frequency responses of the undamped and damped system: (a) from u1 (N) to v1 (m/s) and (b) from u2 (N) to v2 (m/s). � � �, Before

damping design; —, after damping design.

10−1 100 101
−80

−60

−40

−20

0

M
ag

ni
tu

de
 (d

B
)

10−1 100 101
−80

−60

−40

−20

0

M
ag

ni
tu

de
 (d

B
)

Frequency (rad/s)

Frequency (rad/s)

Fig. 4. Frequency responses of the undamped and damped system: (a) from u1 (N) to v2 (m/s) and (b) from u2 (N) to v1 (m/s). � � �, Before
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designs using the H1 upper bound optimization approach are shown in Figs. 6 and 7. Fig. 6 shows the values
of the H1 norm bound obtained using our upper bound optimization approach, as well as, the exact H1
norm that corresponds to each design as the total damping capacity ctotal changes. Indeed, we observe that in
each design the guaranteed H1 norm bound of the designed system and its actual H1 norm are very close.
This result demonstrates that our upper bound optimization approach provides a good upper bound estimate
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of the actual H1 norm of the system. The values of the optimized damping parameters that correspond to
each design are shown in Fig. 7. We observe that for each design c1 ¼ c2 and c3 ¼ c4 although c5 is close to
zero. This result is justified due to the location of the disturbance forces u1 and u2.

5.4. Application to a large-scale structural system

As a last example, we apply the proposed design method for the damping parameter design of a large-scale
collocated structural system. We consider the finite element structural model for the assembly phase 8A-OBS
of the International Space Station (ISS) shown in Fig. 8 with collocated measurements and inputs. This
example follows the state-space model in Eq. (1) with 216 degrees-of-freedom [33]. We assume Rayleigh
damping and we consider a damping parameter optimization (possibly implemented through active control
means) to satisfy H1 norm specifications. Fig. 9 shows the H1 norm bound obtained by solving the
optimization problem presented in Section 4 for different values of the total damping capacity ctotal and the
actual H1 norm of the structural system for each design. It is observed that the value of the H1 norm bound
and the achievable H1 norm are extremely close. It should be noted that the use of traditional optimization
methods for damping parameter design for this system could easily become prohibitive due to the high
dimensionality of the system.
Fig. 8. The assembly phase 8A-OBS of the International Space Station.
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6. Conclusion

We have considered the damping parameter design optimization in structural systems with collocated
measurements and inputs. By utilizing an explicit H1 norm bound, a computationally efficient linear matrix
inequality formulation is proposed to design the damping parameters that guarantee a desired H1 norm of
such structural systems. The approach takes into consideration constrains on the values of the damping
parameters and the total available damping resources. Computational examples demonstrate the validity and
effectiveness of the proposed H1 upper bound damping design approach. The design methods are applicable
to multi-degree-of-freedom systems and are particularly useful for very large-scale systems where the existing
damping coefficient design methods are computationally prohibitive.
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